Psychometric models of individual differences in reading comprehension: A reanalysis of Freed, Hamilton, and Long (2017)

Abstract

Individual differences in reading comprehension have often been explored using latent variable modeling (LVM), to assess the relative contribution of domain-general and domain-specific cognitive abilities. However, LVM is based on the assumption that the observed covariance among indicators of a construct is due to a common cause (i.e., a latent variable; Pearl, 2000). This is a questionable assumption when the indicator variables are measures of performance on complex cognitive tasks. According to Process Overlap Theory (POT; Kovacs & Conway, 2016), multiple processes are involved in cognitive task performance and the covariance among tasks is due to the overlap of processes across tasks. Instead of a single latent common cause, there are thought to be multiple dynamic manifest causes, consistent with an emerging view in psychometrics called network theory (Barabási, 2012; Borsboom & Cramer, 2013). In the current study, we reanalyzed data from Freed et al. (2017) and compared two modeling approaches - LVM (Study 1) and psychometric network modeling (Study 2). In Study 1, two exploratory LVMs demonstrated problems with the original measurement model proposed by Freed et al. Specifically, the model failed to achieve discriminant and convergent validity with respect to reading comprehension, language experience, and reasoning. In Study 2, two network models confirmed the problems found in Study 1, and also served as an example of how network modeling techniques can be used to study individual differences. In conclusion, more research, and a more informed approach to psychometric modeling, is needed to better understand individual differences in reading comprehension.

Publication
Journal of Memory and Language
Christopher J. Schmank
Christopher J. Schmank
Statistics Consultant and Instructor/Assistant Professor

My research interests include the impact of psychosocial stress and emotional regulation on various cognitive abilities (i.e., processing speed, rationality, and language production). My additional skills include statistical modeling techniques using latent variable and/or psychometric network analyses. I am also experienced in user experience strategy and research including A/B testing, rapid prototyping, and competitive analyses.